поискавой системы для электроныых деталей
  Russian  ▼
ALLDATASHEETRU.COM

X  

ADP1111AN-5 датащи(PDF) 7 Page - Analog Devices

номер детали ADP1111AN-5
подробное описание детали  Micropower, Step-Up/Step-Down SW Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
производитель  AD [Analog Devices]
домашняя страница  http://www.analog.com
Logo AD - Analog Devices

ADP1111AN-5 датащи(HTML) 7 Page - Analog Devices

Back Button ADP1111AN-5 Datasheet HTML 3Page - Analog Devices ADP1111AN-5 Datasheet HTML 4Page - Analog Devices ADP1111AN-5 Datasheet HTML 5Page - Analog Devices ADP1111AN-5 Datasheet HTML 6Page - Analog Devices ADP1111AN-5 Datasheet HTML 7Page - Analog Devices ADP1111AN-5 Datasheet HTML 8Page - Analog Devices ADP1111AN-5 Datasheet HTML 9Page - Analog Devices ADP1111AN-5 Datasheet HTML 10Page - Analog Devices ADP1111AN-5 Datasheet HTML 11Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 16 page
background image
ADP1111
–7–
REV. 0
INDUCTOR SELECTION–STEP-UP CONVERTER
In a step-up or boost converter (Figure 18), the inductor must
store enough power to make up the difference between the input
voltage and the output voltage. The power that must be stored
is calculated from the equation:
PL = VOUT +V D −V IN(MIN)
()• I
OUT
()
(Equation 1)
where VD is the diode forward voltage (0.5 V for a 1N5818
Schottky). Because energy is only stored in the inductor while
the ADP1111 switch is ON, the energy stored in the inductor
on each switching cycle must be equal to or greater than:
P
f
L
OSC
(Equation 2)
in order for the ADP1111 to regulate the output voltage.
When the internal power switch turns ON, current flow in the
inductor increases at the rate of:
IL t
()=VIN
R'
1
− e
−R't
L


(Equation 3)
where L is in Henrys and R' is the sum of the switch equivalent
resistance (typically 0.8
Ω at +25°C) and the dc resistance of
the inductor. In most applications, the voltage drop across the
switch is small compared to VIN so a simpler equation can be
used:
IL t
()=VIN
L
t
(Equation 4)
Replacing ‘t’ in the above equation with the ON time of the
ADP1111 (7
µs, typical) will define the peak current for a given
inductor value and input voltage. At this point, the inductor
energy can be calculated as follows:
EL =
1
2
L
• I2 PEAK
(Equation 5)
As previously mentioned, EL must be greater than PL/fOSC so
that the ADP1111 can deliver the necessary power to the load.
For best efficiency, peak current should be limited to 1 A or
less. Higher switch currents will reduce efficiency because of
increased saturation voltage in the switch. High peak current
also increases output ripple. As a general rule, keep peak current
as low as possible to minimize losses in the switch, inductor and
diode.
In practice, the inductor value is easily selected using the
equations above. For example, consider a supply that will
generate 12 V at 40 mA from a 9 V battery, assuming a 6 V
end-of-life voltage. The inductor power required is, from
Equation 1:
PL = 12V + 0.5V − 6V
()• 40mA
()=260mW
On each switching cycle, the inductor must supply:
PL
f OSC
=
260 mW
72 kHz
= 3.6 µJ
Since the required inductor power is fairly low in this example,
the peak current can also be low. Assuming a peak current of
500 mA as a starting point, Equation 4 can be rearranged to
recommend an inductor value:
L
=
V IN
IL(MAX )
t
=
6V
500 mA
7
µs = 84 µH
Substituting a standard inductor value of 68
µH with 0.2 Ω dc
resistance will produce a peak switch current of:
IPEAK =
6V
1.0
1
− e
−1.0 Ω• 7 µs
68
µH
 = 587 mA
Once the peak current is known, the inductor energy can be
calculated from Equation 5:
EL =
1
2
68
µH
()• 587mA
()2 =11.7µJ
Since the inductor energy of 11.7
µJ is greater than the P
L/fOSC
requirement of 3.6
µJ, the 68 µH inductor will work in this
application. By substituting other inductor values into the same
equations, the optimum inductor value can be selected.
When selecting an inductor, the peak current must not exceed
the maximum switch current of 1.5 A. If the equations shown
above result in peak currents > 1.5 A, the ADP1110 should be
considered. Since this device has a 70% duty cycle, more energy
is stored in the inductor on each cycle. This results is greater
output power.
The peak current must be evaluated for both minimum and
maximum values of input voltage. If the switch current is high
when VIN is at its minimum, the 1.5 A limit may be exceeded at
the maximum value of VIN. In this case, the ADP1111’s current
limit feature can be used to limit switch current. Simply select a
resistor (using Figure 6) that will limit the maximum switch
current to the IPEAK value calculated for the minimum value of
VIN. This will improve efficiency by producing a constant IPEAK
as VIN increases. See the “Limiting the Switch Current” section
of this data sheet for more information.
Note that the switch current limit feature does not protect the
circuit if the output is shorted to ground. In this case, current is
only limited by the dc resistance of the inductor and the forward
voltage of the diode.
INDUCTOR SELECTION–STEP-DOWN CONVERTER
The step-down mode of operation is shown in Figure 19.
Unlike the step-up mode, the ADP1111’s power switch does not
saturate when operating in the step-down mode; therefore,
switch current should be limited to 650 mA in this mode. If the
input voltage will vary over a wide range, the ILIM pin can be
used to limit the maximum switch current. Higher switch
current is possible by adding an external switching transistor as
shown in Figure 21.
The first step in selecting the step-down inductor is to calculate
the peak switch current as follows:
IPEAK =
2 IOUT
DC
VOUT + VD
V IN −VSW +VD


(Equation 6)
where DC = duty cycle (0.5 for the ADP1111)
VSW = voltage drop across the switch
VD = diode drop (0.5 V for a 1N5818)
IOUT = output current
VOUT = the output voltage
VIN = the minimum input voltage


Аналогичный номер детали - ADP1111AN-5

производительномер деталидатащиподробное описание детали
logo
Analog Devices
ADP1111ANZ AD-ADP1111ANZ Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW lator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1111ANZ-12 AD-ADP1111ANZ-12 Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1111ANZ-12 AD-ADP1111ANZ-12 Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW lator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1111ANZ-3.3 AD-ADP1111ANZ-3.3 Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1111ANZ-3.3 AD-ADP1111ANZ-3.3 Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW lator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
More results

Аналогичное описание - ADP1111AN-5

производительномер деталидатащиподробное описание детали
logo
Analog Devices
ADP1111 AD-ADP1111_15 Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW Regulator Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1111 AD-ADP1111_09 Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1111ANZ AD-ADP1111ANZ Datasheet
322Kb / 15P
   Micropower, Step-Up/Step-Down SW lator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. A
ADP1110 AD-ADP1110 Datasheet
418Kb / 16P
   Micropower, Step-Up/Step-Down Switching Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. 0
ADP1110 AD-ADP1110_15 Datasheet
426Kb / 16P
   Micropower, Step-Up/Step-Down Switching Regulator Adjustable and Fixed 5 V, 12 V
REV. 0
ADP3000 AD-ADP3000 Datasheet
342Kb / 12P
   Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V and Adjustable High Frequency Switching Regulator
REV. 0
ADP3000AN-33 AD-ADP3000AN-33 Datasheet
650Kb / 16P
   Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator
REV. A
ADP1073 AD-ADP1073 Datasheet
442Kb / 16P
   Micropower DC.DC Converter Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. 0
ADP1108 AD-ADP1108 Datasheet
234Kb / 12P
   Micropower DC-DC Converter Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. 0
ADP1108 AD-ADP1108_15 Datasheet
241Kb / 12P
    Micropower, DC-DC Converter Adjustable and Fixed 3.3 V, 5 V, 12 V
REV. 0
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


датащи скачать

Go To PDF Page


ссылки URL




Конфиденциальность
ALLDATASHEETRU.COM
Вашему бизинису помогли Аллдатащит?  [ DONATE ] 

Что такое Аллдатащит   |   реклама   |   контакт   |   Конфиденциальность   |   обмен ссыками   |   поиск по производителю
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com